High Energy Dilepton Experiments

Alberica Toia

Physics Department CERN

RHIC

• RHIC = Relativistic Heavy Ion Collider

located at Brookhaven National Laboratory

RHIC and its experiments • what's so special about RHIC?

- - it's a collider
 - no thick targets
 - detector systematics do not depend on E_{CM}
 - p+p: √s ≤ 500 GeV (polarized beams)

A+A: $\sqrt{s_{NN}} \le 200 \text{ GeV (per NN pair)}$

- experiments with specific focus
 - BRAHMS (until Run-6)
 - PHOBOS (until Run-5)
- multi purpose experiments
 - PHENIX
 - STAR

Low mass eter: prospects @ RHIC

- •2 scenarios @ SPS profit from high baryon density
 - dropping ρ mass
 - broadening of ρ

•what to expect at RHIC?

	SPS (Pb-Pb)	RHIC (Au-Au)
dN(p)/dy	6.2	20.1
produced baryons (p, p, n, n)	24.8	80.4
$p - \overline{p}$	33.5	8.6
participants nucleons (p – p)A/Z	85	21.4
	110	102

baryon density: almost the same at SPS & RHIC (although the NET baryon density is not!)

e+e-: theoretical guidance at RHIC

- in-medium modifications of vector mesons persists
- open charm contribution becomes significant

The founding fathers' view

- before 1991
 - proposals for various experiments at RHIC
 - STAR, TALES, SPARC, OASIS, DIMUON ...
 - except for STAR everything else is burned down
 - from the ashes rises PHENIX
 - Pioneering High Energy Nuclear Interaction eXperiment
- 1991: PHENIX "conceptual design report"
 - philosophy
 - measure simultaneously as many observables relevant for QCD phase transitions as you can imagine
 - all but one: low-mass dielectrons
 - why no dielectrons?
 - included in first TALES proposal
 - considered to be "too difficult" for PHENIX

a lot of work can make impossible things happen

PHENIX in practice

Nuclear matter in extremis

PHENIX in principle

- 3 detectors for global event characterization
- central spectrometers
 - measurement in range: $|\eta| \leq 0.35 \\ p \geq 0.2 \; GeV/c$
- forward spectrometers
 - muon measurement in range:

$$1.2 < |\eta| < 2.4$$

p $\ge 2 \text{ GeV/c}$

two central electron/photon/hadron spectrometers

two forward muon spectrometers

Au-Au collision as seen in PHENIX

PHENIX: tracking & particle ID

Momentum determination

Simple relation between bending and momentum

 $\alpha = K/p_T$ K~200 rad GeV/c

• Momentum resolution is determined by the resolution of α , which is determined by :

single hit resolution(SHR) and

alignment

 SHR is measured to be 150mm, about 0.3 mrad, which corresponds to 0.3/200=0.1% resolution.

Affected by

global and wire alignments

Electron Identification I

Charged particle tracking (dm: 1%) DC, PC1, PC2, PC3 and TEC

PHENIX optimized for Electron ID

- •Cherenkov light RICH +
- shower EMCAL

- emission and measurement of Cherenkov light in the Ring Imaging Cherenkov detector
- → measure of min. velocity
- how can pions ever be mis-identified below 4.9 GeV/c?
 - •Radiation of cherenkov light (≥ 4.9 GeV/c)
 - Production of delta electrons
 - •Random coincidence (high multiplicity)
 - spherical mirror
- → parallel tracks produce rings at SAME location

Alberica Toia

Electron Identification II

production and of el.magn. shower in the Electro- Magnetic Calorimeter

- → measure of energy E
- PbSc: sampling cal., layers of lead and scintillator
- PbGI: homogeneous lead-glass volume, Cherenkov radiator

- •electron: E ≈ p
- •hadron: E < p
- after RICH cuts, clear electron signal
- •cut on E/p cleans electron sample!
- background
 - photon conversions
 - random associations (next slide)
- main background source: random combination of hadron track/shower with uncorrelated RICH ring
- •"standard" subtraction technique: flip-andslide of RICH
- swapped background agrees in shape with E/p distribution of identified hadrons
- background increases with detector occupancy (can reach ~30% in central Au+Au collisions)

PHENIX measures dielectrons

- first attempt from 2002 Au-Au Run
 - S/B ~ 1/500 (!) for minimum bias events
 - not enough statistics

- Au-Au data taken in 2004
 - ~ 100x statistics
 - photon conversions reduced by factor 2-3
 - expect background reduction by ~ 2

CERN

Detailed measurement of the e+e- pair continuum in p+p and Au+Au collisions at √s_{NN} = 200 GeV and implications for direct photon production

Detailed measurement of the e^+e^- pair continuum in p+p and Au + Au collisions at $\sqrt{s_{NN}}$ =200 GeV and implications for direct photon production

A. Adare, S. Afanastev, C. Aidala, N.N. Ajitanand, S. Y. Akiba, 44,45 H. Al-Bataineh, S. J. Alexander, A. Al-Jamel, S. K. Aokl, A. Al-Jamel, S. K. Aokl, A. Al-Jamel, S. K. Aokl, A. Al-Jamel, S. K. Aronson, J. Asal, E. T. Atomssa, S. Aronson, A. J. Asal, E. T. Atomssa, S. Al-Jamel, S. Aronson, A. J. Asal, E. T. Atomssa, S. Al-Jamel, S. Aronson, A. A. Al-Jamel, S. Aronson, A. Al-Jamel, S. Aronson, A. A. Al-Jamel, S. Aronson, A. A. Al-Jamel, S. Aronson, A. Al-Jamel, A. Al-Jame R. Averbeck, 51 T.C. Awes, 40 B. Azmoun, 4 V. Babintsev, 10 G. Baksay, 15 L. Baksay, 15 A. Baldisseri, 12 K.N. Barish, 5 P.D. Barnes, ³² B. Bassalleck, ³⁸ S. Bathe, ⁵ S. Batsouli, ¹⁰, ⁴⁰ V. Baublit, ⁴³ F. Bauer, ⁵ A. Bazilevsky, ⁴ S. Belikov, ⁴, ²², ⁸ R. Benneut, ⁵¹ Y. Berdnikov, ⁴⁷ A.A. Bickley, ⁶ M.T. Bjorndal, ¹⁰ J.G. Boissevain, ³² H. Borel, ¹² K. Boyle, ⁵¹ M.L. Brooks, ³² D.S. Brown, ³⁶ D. Bucher, ³⁵ H. Bussching, ⁴ V. Bumazhnov, ¹³ G. Bunce, ⁵, ⁴⁵ J.M. Burward-Hoy,²² S. Butsyk,^{22,51} S. Campbell,⁵¹ J.-S. Chai,²⁴ B.S. Chang,⁵⁹ J.-L. Charvet,¹² S. Chernichenko,¹⁹ J. Chiba, 25 C.Y. Chi, 10 M. Chiu, 10, 20 I.J. Chot, 59 T. Chujo, 56 P. Chung, 50 A. Churyn, 19 V. Clanciolo, 40 C.R. Cleven, ¹⁷ Y. Cobigo, ¹² B.A. Cole, ¹⁰ M.P. Comets, ⁴¹ P. Constantin, ^{22, 22} M. Csandd, ¹⁴ T. Csörg^{6, 26} T. Dahms, ⁵¹ K. Das, ¹⁶ G. David, ⁴ M.B. Deaton, ¹ K. Dehmelt, ¹⁵ H. Delagrange, ⁵² A. Dentsov, ¹⁹ D. d'Enterria, ¹⁰ A. Deshpande, ^{45, 51} E.J. Desmond, ⁴ O. Dieuzsch, ⁶⁶ A. Dion, ⁵¹ M. Donsdelli, ⁴⁸ J.L. Drachenberg, ¹ O. Drapter, ³⁰ A. Droes, 51 A.K. Dubey, 58 A. Durum, 19 V. Dzhordzhadze, 5, 53 Y.V. Efremenko, 40 J. Egdemir, 51 F. Ellinghaus, 9 A. Dress, "A. L. Durby," A. Durbin, "V. Lizhordzinskie," "I. V. Erremensko, "E. Egoemi," F. Egoemi, "F. Egoemi," F. Eminganus, "W. S. Emam, "A. Enokkono, 18,31 H. En'po, 44,65 B. Espagnon, 4 S. Esum, 55 K.O. Eyser, E. D.E. Flekks, 34,65 M. Finger, Jr., 6,22 M. Finger, 5,22 F. Fleures, 20 S.L. Fokin, 26 B. Forestier, 23 Z. Fraenkel, 26, * J.E. Franz, 10,51 A. Franz, * A.D. Frawley, 16 K. Fujtwara, 44 Y. Fulkso, 26, 45 S.-Y. Fung, 5 T. Fussyasu, 37 S. Gafratz, 30 I. Garshvill, 25 F. Gastinesu, 25 M. Germaln, 25 A. Glenn, 5,53 H. Gong, 5 M. Gonja, 25 J. Goesse, 12 Y. Goto, 44, 45 R. Granter de Cassagnae, 20 N. Grau, 22 S.V. Greene, 26 M. Grosse Perdekamp, 20, 45 T. Gunji, 8 H.-A. Gustafisson, 24 T. Hachiya, ^{18,64} A. Hadj Henni, ²² C. Haegemann, ²⁸ J.S. Haggerty, ⁴ M.N. Hagiwara, ⁵ H. Hamagaki, ⁸ R. Han, ⁴² H. Harada, ¹⁸ E.P. Hartouni, ²¹ K. Haruna, ¹⁸ M. Harvey, ⁴ E. Haedum, ³⁴ K. Hasuko, ⁴⁴ R. Hayano, ⁸ M. Heffner, ³¹ T.K. Hemmick, ⁵¹ T. Hester, ⁵ J.M. Heuser, ⁴⁴ X. He, ¹⁷ H. Higjima, ²⁰ J.C. Hill, ²² R. Hobbs, ³⁸ M. Hohlmann, ¹⁵ M. Holmes, ⁵⁶ W. Holzmann, ⁵⁰ K. Homma, ¹⁸ B. Hong, ²⁷ T. Horaguchi, ⁴⁴, ⁵⁴ D. Hornback, ⁵³ M.G. Hur, ²⁴ T. Ishhara, ⁴⁴ K. Imal, ²⁹, ⁴⁴ M. Inaha, ⁵⁵ Y. Inoue, ⁴⁶, ⁴⁴ D. Isenhower, ¹ L. Isenhower, ¹ M. Ishhara, ⁴⁴ T. Isobe, ⁸ M. Issah, ⁵² A. Isupov, ⁵² B.V. Jacak, ⁵¹, ¹ J. Jia, ¹⁰ J. Jin, ¹⁰ O. Jinnouch, ⁵² B.M. Johnson, ⁴ K.S. Joo, ³⁶ D. Jouan, ⁴¹ F. Kajihara, ⁸, ⁶⁴ S. Kametani, ⁸, ⁵⁷ N. Kamihara, ⁴⁴, ⁵⁴ J. Kamin, ⁵¹ M. Kaneta, ⁴⁵ J.H. Kang, ⁵⁹ H. Kanou, ⁴⁴, ⁵⁴ T. Kawagishi, ⁵⁵ D. Kawall, ⁴⁵ A.V. Kazantsev, ²⁸ S. Kelly, ⁹ A. Khanzadoev, ⁴³ J. Kikuchi, ⁵⁷ D.H. Kim, ³⁶ D.J. Kim, ⁵⁸ E. Kim, 49 Y.-S. Kim, 24 E. Kinney, 9 A. Kiss, 14 E. Kistenev, 4 A. Kiyomichi, 44 J. Klay, 31 C. Klein-Boesing, 25 L. Kochenda, ³ V. Kochetkov, ¹⁸ B. Komkov, ⁶ M. Konno, ⁵ D. Kotchetkov, ⁵ A. Kozlov, ³⁶ A. Král, ¹¹ A. Kravitz, ¹⁰ P.J. Kroon, ⁶ J. Kubart, ⁶, ²¹ G.J. Kunde, ²⁵ N. Kurihara, ⁸ K. Kurita, ⁴⁵, ⁴⁸ M.J. Kweon, ²⁷ Y. Kwon, ⁵³, ⁵⁶ G.S. Kyle, ³⁶ R. Lacey, ⁵⁰ Y.-S. Lal, ¹⁰ J.G. Lajote, ²² A. Lebedev, ²² Y. Le Bornec, ⁴¹ S. Leckoy, ⁵¹ D.M. Lee, ²⁵ M.K. Lee, ⁵⁸ T. Lee, ³⁸ M.J. Leitch, ²⁸ M.A.L. Lette, ⁴⁸ B. Lerat, ⁴⁸ H. Lim, ⁴⁸ T. Liska, ¹¹ A. Livinenko, ²³ M.X. Liu, ²⁵ X. Li, ⁷ X.H. Li,5 B. Love,55 D. Lynch,4 C.F. Magutre,55 Y.I. Makdisi,3,4 A. Malakhov,23 M.D. Malik,38 V.I. Manko,28 Y. Mao, ⁶², ⁶⁴ L. Mašek, ⁶, ²¹ H. Massu, ²⁵ F. Matathias, ¹⁰, ⁵¹ M.C. McCain, ²⁰ M. McCumber, ⁵¹ P.L. McGaughey, ²²
 Y. Miake, ⁵⁵ P. Mikot, ⁶, ²¹ K. Miki, ⁵⁵ T.E. Miller, ⁵⁶ A. Milov, ⁵¹ S. Mioduszewski, ⁴ G.C. Mishra, ¹⁷ M. Mishra, ² J.T. Mitchell, M. Mitrovski, A. Morreale, D.P. Morrison, J.M. Moss, Z. T.V. Moukhanova, 28 D. Mukhopadhyay,⁵⁶ J. Murata,⁴⁶,⁴⁴ S. Nagamiya,²⁵ Y. Nagata,⁵⁵ J.L. Nagle,⁹ M. Naglis,⁵⁸ I. Nakagawa,⁴⁴,⁴⁵

D. Mukhopadhyay, ²⁶ J. Murata, ²⁶ 44 S. Nagamiya, ²⁵ Y. Nagata, ²⁵ J.L. Nagle, ³ M. Naglis, ³⁸ I. Nakaguwa, ⁴⁴, ⁴⁵ Y. Nakamiya, ¹⁸ T. Nakamura, ¹⁸ K. Nakano, ⁴⁴, ⁵⁴ J. Newby, ³¹ M. Nguyen, ¹⁸ B.E. Norman, ²⁸ R. Nouteer, ⁴ A.S. Nyanin, ³⁸ I. Norman, ²⁸ R. Nolteer, ⁴ S.X. Oda, ⁸ C.A. Oglyle, ²⁹ H. Ohnishi, ⁴⁴ I.D. Ojha, ⁵⁶ H. Okada, ²⁹, ⁴⁴ K. Okada, ⁴⁵ M. Ouche, ⁴⁸ M. Oucheda, ¹⁸ N. Cozawa, ⁸ R. Pak, ⁴ D. Pal, ⁵⁶ A.P.T. Palounek, ²⁹ V. Pantuev, ⁵¹ V. Papavasedilou, ²⁹ J. Park, ⁴⁹ W.J. Park, ²⁷ S.F. Pate, ³⁹ H. Pet, ²⁹ J.-C. Peng, ²⁹ H. Pereira, ¹² V. Peresedov, ²⁹ D. Vu. Peressounko, ²⁸ C. Pinkonburg, ⁴ R.P. Pasani, ⁴⁰ M.L. Purschke, ⁴ A.K. Purwar, ²⁰, ²¹ H. Qu, ¹⁷ J. Rak, ²⁰, ²⁸ A. Rakotozafindrahe, ²⁹ I. Ravinovich, ²⁸ K.F. Read, ²⁰, ²³ S. Rembeckl, ¹⁵ M. Resuer, ²¹ K. Reygen, ²⁵ V. Blabov, ⁴⁴ Y. Blabov, ⁴⁴ G. Roche, ²³ A. Romana, ³⁰, ⁴⁸ M. Rosat, ²² S.S. F. Rosanda, ³¹ P. Rosanda, ³¹ V. Samsonov, ⁴⁸ H.D. Sato, ²⁰, ⁴⁴ S. Sato, ⁴², ⁴⁵ T. Sakagueth, ⁴⁸, ⁵⁷ V. Sashol, ⁵⁸ A. Sakin, ⁵⁸ V. Sarisonov, ⁵⁸ H. Sakata, ⁵⁸ V. Samsonov, ⁴⁸ H.D. Sato, ²⁰, ⁴⁴ S. Sato, ⁴⁰, ⁴⁵ C. S. Sawada, ²⁵ J. Seclo, ⁵⁸ R. Setil, ²⁰ V. Semenov, ¹⁵ R. Seto, ⁵⁸ D. Shrima, ⁵⁸ T.K. Shog, ¹⁶ L. Sheta, ⁵¹ C.L. Silva, ⁴⁸ D. Silvestre, ¹² K.S. Sim, ⁷⁸ C.P. Singh, ⁷ V. Sungh, ⁵⁸ S. Skutnik, ²⁹ M. Sulmoeka, ⁵² W.C. Smith, ¹⁸ A. Soldatov, ¹⁸ R.A. Solva, ³¹ W.E. Sondheim, ²⁸ S.P. Sterlae, ¹⁸ C. Sutre, ⁴¹ J.P. Sullivan, ²² J. Sakkla, ²⁶ T. Tabaru, ⁴⁵ S. Thagat, ⁴⁵ E. M. Takagun, ⁴⁸ A. Takacani, ⁴⁴ C. H. Thanaka, ⁴⁵ V. Tanaka, ⁴⁷ K. Tanaka, ⁴⁸ M. J. Tannenbaum, ⁴ A. Taraencho, ⁵⁰ P. Taffa, ¹³ A. Takacani, ⁴⁴ K.H. Tanaka, ⁴⁵ V. Tanaka, ⁴⁷ K. Tanacan, ⁴⁸ M. J. Tannenbaum, ⁴ A. Taraencho, ⁵⁰ P. Taffa, ¹⁸ A. Takacani, ⁴⁴ C. H. Tanacan, ⁴⁵ C. Sun, ⁴⁸ C. Tanacan, ⁴⁸ M. J. Tannenbaum, ⁴ A. Taraencho, ⁵⁰ P. Taffa,

arXiv:0912.0244

422 authors

59 institutions

56 pages

50 figures

13 tables

Submitted to Physical Review C on 1st December 2009

comprehensive results of dilepton measurements at RHIC.

Background

- Type I: identified on a pair-by-pair basis:
 - Overlapping hits in the detectors (mostly RICH)
 - Photon conversions
- Type II: cannot be identified on pair-by-pair basis → removed statistically
 - Combinatorial B^{comb} all combinations where the origin of the two electrons is totally uncorrelated
 - Correlated B^{corr}
 - Cross pairs: Two pairs in the final state of a meson
 - Jet pairs: Two hadrons within the same jet or in back-toback jets, decay into electron pairs

Overlapping pairs

 when a pion points to the same ring as an electron, it is associated to the same ring, therefore considered an electron

This happens for a typical values of opening angle (different for like and unlike) which folded with the average momentum of the electron corresponds to a particular invariant mass (different for like and unlike) → cut: requested minimum distance

between the rings (~1 ring diameter)

- Cut applied as event cut
 - Real events: discarded and never reused
 - Mixed events: regenerated to avoid topology dependence

Photon conversion rejection

- artifact of PHENIX tracking
 - assume that all tracks originate from the vertex
 - off vertex tracks → wrong momentum vector
- → conversions are reconstructed with m≠0 (m~r)

 conversions "open" in a plane perpendicular to the magnetic field

Low-mass eter pairs: the problem

electrons/event in PHENIX

```
• N_e = (dN/d\eta)\pi^0 * (BR+CONV) * acc * f(p_T>0.2GeV)
350 (0.012+0.02) 0.5*0.7 0.32 = 1.3
```

combinatorial background pairs/event

•
$$B = \frac{1}{2} * \frac{1}{2}N_e^2 e^{-N} = 0.1$$

- expected signal pairs/event (m>0.2GeV, p_T>0.2 GeV)
 - $S = 4.2*10^{-4}$
- →signal/background
 - as small as 1/ few hundred
 - depends on mass
- what can we do to reduce the combinatorial background? where does it come from?

Conversion/Dalitz rejection?

- typically only one "leg" of the pair is in the acceptance
 - acceptance holes
 - "soft" tracks curl up in the magnetic field
- only (!) solution
 - catch electrons before they are lost
 - need new detector and modification of magnetic field

Consequences of poor S/B^{comb}

- how is the signal obtained?
 - unlike-sign pairs: F
 - combinatorial background: B (like-sign pairs or event mixing)
 - $\bullet \rightarrow S = F B$
- statistical error of S
 - depends on magnitude of B, not S
 - $\Delta S \approx \sqrt{2B}$ (for S<<B)
- "background free equivalent" signal S_{eq}
 - signal with same relative error in a situation with zero background
 - S_{eq} = S * S/2B
 - example: $S = 10^4$ pairs with S/B = 1/250 \rightarrow $S_{eq} = 20$
- systematic uncertainty of S
 - dominated by systematic uncertainty of B
 - example: event mixing with 0.25% precision (fantastic!)
 → ~60% systematic uncertainty of S (for S/B = 1/250)

Type II background

METHOD 1

- Combinatorial background: event mixing
 - Like and Unlike-sign pairs taking electons from different events
 - Normalize like-sign background to like-sign foreground in a region in (m,p_T)where they agree
 - Normalize unlike-sign background to 2√N₊₊N₋
- Correlated background: simulations
 - Cross pairs: EXODUS
 - Jet pairs: PYTHIA
 - Normalize like-sign background to like-sign foreground
 - Normalize unlike-sign background in the same way

ADVANTAGE

Great statistics (much larger than foreground)

DISADVANTAGE

- Assume simulation shape
- Need independent normalization

Type II background

METHOD 2

- If $dN_{like} = dN_{unlike} \rightarrow S_{+-} = N_{+-} 2\sqrt{N_{++}N_{-}}$
- In PHENIX dN_{like} ≠ dN_{unlike}
 - But unlike-sign background $B_{+-} = 2\sqrt{N_{++}N_{--}}$ can be corrected by acceptance difference

$$S_{+-} = N_{+-} - 2\sqrt{N_{++}N_{--}} \cdot \frac{B_{+-}^{\text{comb}}}{2\sqrt{B_{++}^{\text{comb}} \cdot B_{--}^{\text{comb}}}}$$

ADVANTAGE

- This method measures ALL type II background simultaneously
- •only assumptions needed:
 - dN_{like} measures only background
 - Background symmetric in like and unlike

DISADVANTAGE

Poor statistics (similar to foreground)

Combinatorial Background shape

- Shape determined with event mixing
 - Excellent agreements for likesign pairs
- Normalization of mixed pairs
 - Small correlated background at low masses
 - normalize B₊₊ and B₋₋ to N₊₊ and N₋₋ for m_{ee} > 0.7 GeV/c²
 - Normalize mixed B_{+-} pairs to $N_{+-} = 2\sqrt{N_{++}N_{--}}$
 - Subtract correlated background
- Systematic uncertainties
 - statistics of N₊₊ and N₋: 0.12%
 - different pair cuts in like and unlike sign: 0.2 %

Differential Combinatorial Background

Centrality	p_0	χ^2/NDF	χ^2 test	<i>p</i> -value	max dev.	
0-10%	$6.3 \pm 8.8 \times 10^{-4}$	30.2/19	1.05	0.25	0.0014	
10-20%	$-9.4 \pm 1.4 \times 10^{-4}$	18.6/19	0.97	0.61	0.0018	
20-40%	$-2.4 \pm 1.8 \times 10^{-3}$	18.7/19	1.02	0.40	0.0034	
40-60%	$-8.5 \pm 4.9 \times 10^{-3}$	21.9/19	1.65	0.02	0.0071	
60-92%	$-1.8 \pm 1.6 \times 10^{-2}$	21.5/14	1.51	0.04	0.0321	
00-92%	$2.6 \pm 6.3 \times 10^{-4}$	27.6/19	0.92	0.83	0.0010	
$p_T < 1 \text{ GeV}/c$	$9.2 \pm 5.1 \times 10^{-4}$	18.9/18	0.95	0.73	0.0011	
$1 < p_T < 2 \text{ GeV}/c$	$-3.4 \pm 1.6 \times 10^{-3}$	27.9/18	0.91	0.84	0.0029	
$p_T > 2 \text{ GeV}/c$	$-9.6 \pm 5.4 \times 10^{-3}$	15.2/18	0.97	0.63	0.0038	

Combinatorial and Correlated Background

- •Combinatorial Background from mixed events normalized to 2√N₊₊N₋₋
- Cross pairs simulated with decay generator EXODUS
- Jet pairs simulated with PYTHIA
- normalized to like sign data and use same normalization for unlike-sign

Uncertainty of Background Subtraction

•RMS → Systematic Uncertainty

Cross check Converter Method

- We know precise radiation length (X₀) of each detector material
- The photonic electron yield can be measured by increase of additional material (photon converter was installed)
- The non-photonic electron yield does not increase
- Photonic single electron: x 2.3
- Inclusive single electron :x 1.6
- Combinatorial pairs :x 2.5

Photon Converter (Brass: 1.7% X_0)

The raw subtracted spectrum

Same analysis on data sample with additional conversion material

→ Combinatorial background increased by 2.5

Good agreement within statistical error

From the agreement converter/non-converter and the decreased S/B ratio scale error = 0.15±0.51% (consistent with the 0.25% error we assigned)

Efficiency Correction

Efficiency Correction:

- Derived from single electron efficiency
- Include detector dead areas
- Include pair cuts
- •Same shape for p+p and Au+Au
- p+p further corrected for trigger efficiency

m_{ee} (GeV/c²)

Acceptance Correction

Acceptance Correction:

- •Derived from single electron acceptance
- Compare
 - Hadron decays (full cocktail)
 - Flat distribution

in different mass regions as function of p_T

Difference within ~10%

Hadronic Cocktail Measurement

• Parameterization of PHENIX π^{\pm},π^{0} data $\pi^{0} = (\pi^{+}+\pi^{-})/2$

$$E \frac{d^{3}\sigma}{d^{3}p} = \frac{A}{\left(exp(-ap_{T} - bp_{T}^{2}) + p_{T}/p_{0}\right)^{n}}$$

- Other mesons:fit with m_T scaling of π^0 $p_T \rightarrow \sqrt{(p_T^2 + m_{meson}^2 m_{\pi}^2)}$ fit the normalization constant
- →All mesons m_T scale!!!
- Hadronic cocktail was well tuned to individually measured yield of mesons in PHENIX for both p+p and Au+Au collisions.
- Mass distributions from hadron decays are simulated by Monte Carlo.
 - π⁰, η, η', ω, φ, ρ, **J/**ψ, ψ'
- Effects on real data are implemented

PLB 670,313(2009)

Cocktail Comparison p+p

arXiv:0912.0244

- 2.25pb⁻¹ of triggered p+p data
- Data absolutely normalized

Lecture

- Excellent agreement with Cocktail
- Filtered in PHENIX acceptance

Light hadron contributions subtracted **Heavy Quark Cross Sections:**

- Charm: integration after cocktail subtraction $\sigma_{cc} = 544 \pm 39^{stat} \pm 142^{syst} \pm 200^{model} \, \mu b$
- Simultaneous fit of charm and bottom:
 - $-\sigma_{cc} = 518 \pm 47^{stat} \pm 135^{syst} \pm 190^{model} \mu b$
 - $-\sigma_{bb} = 3.9 \pm 2.4^{stat} + 3/-2^{syst} \mu b$
 - Charm cross section from single electron measurement [PRL97, 252002 (2006)]:

Alberica Toia

Charm and bottom cross sections

CHARM

Dilepton measurement in agreement with single electron, single muon, and with FONLL (upper end)

BOTTOM

Dilepton measurement in agreement with measurement from e-h correlation and with FONLL (upper end)

First measurements of bottom cross section at RHIC energies!

arXiv:0912.0244

Cocktail Comparison Au+Au

- Low Mass Region:
 large enhancement 150 <m_{ee}<750 MeV
- 4.7±0.4stat ±1.5syst ±0.9model
- Intermediate Mass Region: dominated by charm ($N_{coll} \times \sigma_{cc}$)
 - PYTHIA
 - Random cc correlation
- Single electron measurement
 - High p_T suppression
 - Flow
 - → Expected modifications in the pair invariant mass
 - → random cc correlation?
 - →Room for thermal contribution?

- · Light hadrons cocktail
- Charm normalized N_{coll} x σ_{pp}
 Filtered in PHENIX acceptance

arXiv:0912.0244

Centrality Dependence LMR

Centrality	Enhancement (\pm stat \pm syst \pm model)
00-10 %	$7.6 \pm 0.5 \pm 1.5 \pm 1.5$
10-20~%	$3.2\pm0.4\pm0.1\pm0.6$
20- $40~%$	$1.4 \pm 1.3 \pm 0.02 \pm 0.3$
40- $60~%$	$0.8 \pm 0.3 \pm 0.03 \pm 0.2$
60- $92~%$	$1.5 \pm 0.3 \pm 0.001 \pm 0.3$
MB	$4.7 \pm 0.4 \pm 1.5 \pm 0.9$

• π^0 region:

consistent with cocktail

- Low Mass Region: yield increases faster than proportional to N_{part}
- \rightarrow enhancement from binary annihilation ($\pi\pi$ or qq) ?

arXiv:0912.0244

arXiv:0912.0244

Centrality Dependence IMR

charm is a hard probe

- total yield follows binary scaling (known from single e[±])
- intermediate mass yield shows the same scaling

Momentum Dependence

Lecture

LMR I: Virtual Photons

- Any source of real γ can emit γ^* with very low mass.
- If the Q² (=m²) of virtual photon is sufficiently small, the source strength should be the same
- The ratio of real photon and quasi-real photon can be calculated by QED
- → Real photon yield can be measured from virtual photon yield, which is observed as low mass e⁺e⁻ pairs

Kroll-Wada formula

$$\frac{d^{2}N}{dM_{ee}dN_{\gamma}} = \frac{2\alpha}{3\pi} \sqrt{1 - \frac{4m_{e}^{2}}{M_{ee}^{2}}} \left(1 + \frac{2m_{e}^{2}}{M_{ee}^{2}}\right) \frac{1}{M_{ee}} S$$

S: Process dependent factor

Case of Hadrons

Hadrons
$$S = |F(M_{ee}^2)|^2 \left(1 - \frac{M_{ee}^2}{M_{hadron}^2}\right)^3$$

- Obviously S = 0 at $M_{ee} > M_{hadron}$
- Case of γ*

• If
$$p_T^2 >> M_{ee}^2$$

 $S = 1$

• Possible to separate hadron decay components from real signal in the proper mass window.

Determination of γ^* fraction, r

 $r = direct \gamma^*/inclusive \gamma^*$ determined by fitting the following function for each p_T bin.

$$f_{data}(M_{ee}) = (1-r) \cdot f_{cocktail}(M_{ee}) + r \cdot f_{direct}(M_{ee})$$

- f_{direct} is given by Kroll-Wada formula with S = 1.
- f_{cocktail} is given by cocktail components
- Normalized to the data for m<30 MeV/c²
- Fit in 120-300MeV/c² (insensitive to π^0 yield)
- Assuming direct γ* mass shape: χ²/NDF=12.2/6

arXiv:0804.4168

arXiv:0912.0244

Direct measurement of S(m_{ee}, p_T)

$$\begin{split} R(m,p_T) \; &\simeq \; \frac{dN_{\gamma^*}^{\rm excess}(m,p_T)}{dp_T} / \frac{dN_{\gamma}^{\rm incl}(p_T)}{dp_T} \\ &= \; S(m,p_T) dN_{\gamma}^{direct}(p_T) / dN_{\gamma}^{\rm incl}(p_T) \end{split}$$

No indication of strong modification of EM correlator at this high p_T region

(presumably the virtual photon emission is dominated by hadronic scattering process like $\pi+\rho\rightarrow\pi+\gamma^*$ or $q+g\rightarrow q+\gamma^*$)

Extrapolation to M=0 should give the real photon emission rate

arXiv:0912.0244

41

direct γ*/inclusive γ*

Base line

Curves: NLO pQCD calculations with different theoretical scales done by W. Vogelsang.

$$\left(d\sigma_{\gamma}^{NLO}/dp_{T}\right)/\left(d\sigma_{\gamma}^{NLO}/dp_{T}+d\sigma_{\gamma}^{hadron}/dp_{T}\right)$$

p+p

- Consistent with NLO pQCD
 - better agreement with small µ

Au+Au

Clear enhancement above NLO pQCD

1st measurement of Thermal Radiation

- Direct photon
- -real (p_T>4GeV)
- -virtual (1<p_T<4GeV & m_{ee} <300MeV)
- pQCD consistent with p+p down to p_T=1GeV/c
- Au+Au above N_{coll} x p+p for p_T < 2.5 GeV/c
- Au+Au = pQCD + exp: $T_{ave} = 221 \pm 19^{stat} \pm 19^{syst}$

arXiv:0912.0244

Comparison to Hydro models

44

- From data: Au+Au = pQCD + exp: $T_{ave} = 221 \pm 19^{stat} \pm 19^{syst}$
- Comparison to hydrodynamical models:
 - p_T<3 GeV/c thermal contribution dominates over pQCD.
 - Assume formation of a hot QGP with 300 MeV < T_{init} < 600 MeV 0.6 fm/c < τ_0 < 0.15 fm/c
 - Models reproduce the data within a factor of two.

0.2

0.4

arXiv:0912.0244

LMR II

longer const

0.6

8.0

1.2

 m_{ee} (GeV/ c^2)

Large and broad enhancement

→ S(m_{ee}) no

- →S(m_{ee}) const
- <R>=0.177±0.032
- Consistent with higher p_T values

HGS-HIRe Lecture Week

Extrapolate the spectrum of direct photons

- For $0.8 < p_T < 1.0$ GeV/c $< R > = 0.177 \pm 0.032$ consistent with higher p_T
- Decay photons spectrum steeper than direct γ spectrum
- → At lower p_T , the expected direct photon fraction 10³ $r = \text{direct } \gamma \text{ / inclusive } \gamma = \text{direct } \gamma \text{ / (direct + 10⁴ decay) } \gamma \le 0.17$
- For $0.4 < p_T < 0.6 \text{ GeV/c}$ R(m) > 0.17
- → The enhancement in the low p_T region is larger than that expected from internal conversion of direct photons.

Dilepton Spectra

Acceptance-

corrected

Au+Au

 $p_T>1GeV/c$: small excess \rightarrow internal conversion of direct photons

p_T<1GeV/c: large excess for 0.3<m_{ee}<1 GeV

→Low temperature component with strong modification of EM correlator?

Average Temperature of the sources

arXiv:0912.0244

m_T - m₀ spectrum of Excess = Data - (cocktail+charm)

• Fit:
$$\frac{d^2N}{2\pi m_T dm_T dy} = A_1 \cdot \exp{-\frac{m_T}{T_1}} + A_2 \cdot \exp{-\frac{m_T}{T_2}}$$
 or $\frac{d^2N}{2\pi m_T dm_T dy} = A_1 \cdot \exp{-\frac{m_T}{T_1}} + 1$ Direct γ

 $T_1 = 92.0 \pm 11.4^{stat} \pm 8.4^{syst} \text{ MeV}$ $T_2 = 258.4 \pm 37.3^{stat} \pm 9.6^{syst} \text{ MeV}$

 $\chi^2/NDF = 4.00/9$

 $T_1 = 86.5 \pm 12.7^{\text{stat}} + 11.0_{-28.4 \text{syst}}$ MeV $T_{\gamma} = 221 \pm 19^{\text{stat}} \pm 19^{\text{syst}}$ MeV $\chi^2/\text{NDF} = 16.6/11$

low mass enhancement has inverse slope of ~100 MeV.

Theory comparison

- $\pi\pi$ annihilation + modified ρ spectral function
 - Broadening
 - Mass shifting
 - Both
- Insufficient to explain data

arXiv:0912.0244

Theory comparison II

Even when looking differentially in various p_T bins the theoretical calculations are insufficient to explain the data

High p_T region: here we isolated a contribution arising from

• π+ρ→π+γ* (typically included)

or

q+g→q+γ*
 (not included so far)

Low p_T region: where the enhancement becomes large and its shape seems incompatible with unmodified q+g→q+γ*

Theory comparison III

- The theoretical calculations are insufficient to explain the data
- High p_T : they are too soft (except for HSD which does not include partonic contribution)
- Low p_T: they are too hard to explain the enhancement (T~100 MeV)

what is missing?

Lecture

Summary

- EM probes ideal "penetrating probes" of dense partonic matter created at RHIC
- Double differential measurement of dilepton emission rates can provide
 - Temperature of the matter
 - Medium modification of EM spectral function
- PHENIX measured dilepton continuum in p+p and Au+Au

p+p

Low Mass Region

- Excellent agreement with cocktail
 - LMR I deduce photon emission in agreement with pQCD
 - LMR II Excellent agreement with cocktail

Au+Au

Low Mass Region

- Enhancement above the cocktail 4.7±0.4^{stat} ±1.5^{syst}±0.9^{model}
- LMR I deduce photon emission exponential above pQCD, T>200 MeV
- LMR II
 - Centrality dependency: increase faster than N_{part}
 - p_T dependency: enhancement concentrated at low p_T, T ~ 100 MeV

HGS-HIRe

Intermediate Mass Region

Extract charm and bottom cross section

Intermediate Mass Region

Agreement with PYTHIA: coincidence?

Near-Future Measurements at RHIC

- Improve measurement in the LMR
 - reduce combinatorial background
 - → Hadron Blind Detector:

Dalitz rejection via opening angle

- identify e[±] in field free region
- veto signal e[±] with partner
- HBD concept
 - windowless CF4 Cherenkov detector
 - 50 cm radiator length
 - Csl reflective photocathode
 - triple GEM with pad readout
- HBD time scale
 - Proof of principle in 2007
 - Successful data taking with p+p 2009
 - Ready for Au+Au in 2010
- Improve measurement in the IMR
 - → disentangle charm and thermal
- HGS-HIRe Contribution
 - → Silicon Vertex Detector

Future

- dielectron measurements in high energy HI collisions
 - go to even higher energy, i.e. maximum temperature → LHC
 - go back to lower energy, i.e. maximum baryon density → FAIR
 - stay at RHIC
 - HBD (and silicon vertex upgrades) for improved experiments at maximum RHIC energy
 - "low energy"
 program, i.e.
 use RHIC as
 a storage ring
 instead of an
 accelerator

EM Probes at LHC

DILEPTONS

Low p_T

- Thermal/bulk photons (QGP + hadronic phase)
- Photons from jet-medium interactions
 - Jet-photon conversion, Induced photon bremsstrahlung

PHOTONS

- Cross sections forward/backward peaked
- Yields approximately proportional to the jet distributions
 Sensitivity to early time jet distributions
- Longer path lads to increased production → Negative v2

High p_T

- Prompt photons from initial hard processes
 - No final state effects at all.
- Fragmentation/vacuum bremsstrahlung
 - Sensitivity to medium effects in the final state

 At higher dN/dy thermal radiation from hadron gas dominant for m<1GeV

• For m>1GeV relatively stronger QGP radiation: comparable to DD but energy loss???

Projections for RHIC: high energy

- impact of the HBD & modified B field at top energy
- recorded collisions
 - 10⁹
 - 10¹⁰

Projections for RHIC: low energy

- collision rates decrease with decreasing beam energy
 - ~40 Hz @ 8.6 GeV/u
 - 2 weeks run time gives ~50M events
 - HBD 'eliminates' sys. uncertainty
 - electron cooling in RHIC can increase the collision rate by a factor 10
 → ~500M events in 2 weeks
- →very promising!!!

